

Fast Object Detection in Dense Point Clouds

Paul Nykiel | 14. Dezember 2019 | Institut für Mess-, Regel- und Mikrotechnik

 Robuste Detektion von Schildern, Hindernisse, Fußgänger, Steigungen für Carolo-Cup

- Robuste Detektion von Schildern, Hindernisse, Fußgänger, Steigungen für Carolo-Cup
- ► Auf Punkt Wolken aus Intel[©] RealSenseTM Depth Camera D435

- Robuste Detektion von Schildern, Hindernisse, Fußgänger, Steigungen für Carolo-Cup
- ► Auf Punkt Wolken aus Intel[©] RealSenseTM Depth Camera D435
- Echtzeitfähig auf dem Fahrzeug

- Robuste Detektion von Schildern, Hindernisse, Fußgänger, Steigungen für Carolo-Cup
- ► Auf Punkt Wolken aus Intel[©] RealSenseTM Depth Camera D435
- Echtzeitfähig auf dem Fahrzeug
- Zusätzlich auf Echtweltdaten testen

¹Grafiken basierend auf: (Braunschweig, Technische Universität: *Carolo-Cup Regelwerk*. 2018)

¹Grafiken basierend auf: (Braunschweig, Technische Universität: *Carolo-Cup Regelwerk*. 2018)

¹Grafiken basierend auf: (Braunschweig, Technische Universität: *Carolo-Cup Regelwerk*. 2018)

 Hindernisse und Fußgänger sind nicht anhand der Punktwolke unterscheidbar

¹Grafiken basierend auf: (Braunschweig, Technische Universität: *Carolo-Cup Regelwerk*. 2018)

- Hindernisse und Fußgänger sind nicht anhand der Punktwolke unterscheidbar
- Steigungen mit bis zu 10°

¹Grafiken basierend auf: (Braunschweig, Technische Universität: *Carolo-Cup Regelwerk*. 2018)

 Kombinierte Detektion und Klassifikation mit Convolutional Neural Network (CNN)

² Wang, Yan; Chao, Wei-Lun; Garg, Divyansh; Hariharan, Bharath; Campbell, Mark und Weinberger, Kilian Q.: "Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving". 2018.

- Kombinierte Detektion und Klassifikation mit Convolutional Neural Network (CNN)
- Langsam ohne GPU (Abschätzung: 30s für Complex-YOLO)

² Wang, Yan; Chao, Wei-Lun; Garg, Divyansh; Hariharan, Bharath; Campbell, Mark und Weinberger, Kilian Q.: "Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving". 2018.

- Kombinierte Detektion und Klassifikation mit Convolutional Neural Network (CNN)
- Langsam ohne GPU (Abschätzung: 30s für Complex-YOLO)
- Schneller: Seperate Detektion und Klassifikation

² Wang, Yan; Chao, Wei-Lun; Garg, Divyansh; Hariharan, Bharath; Campbell, Mark und Weinberger, Kilian Q.: "Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving". 2018.

- Kombinierte Detektion und Klassifikation mit Convolutional Neural Network (CNN)
- Langsam ohne GPU (Abschätzung: 30s für Complex-YOLO)
- Schneller: Seperate Detektion und Klassifikation
- Primär für Lidar Daten

² Wang, Yan; Chao, Wei-Lun; Garg, Divyansh; Hariharan, Bharath; Campbell, Mark und Weinberger, Kilian Q.: "Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving". 2018.

- Kombinierte Detektion und Klassifikation mit Convolutional Neural Network (CNN)
- Langsam ohne GPU (Abschätzung: 30s für Complex-YOLO)
- Schneller: Seperate Detektion und Klassifikation
- Primär für Lidar Daten
- Für Stereo: Oftmals auf Disparitätsbildern

² Wang, Yan; Chao, Wei-Lun; Garg, Divyansh; Hariharan, Bharath; Campbell, Mark und Weinberger, Kilian Q.: "Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving". 2018.

- Kombinierte Detektion und Klassifikation mit Convolutional Neural Network (CNN)
- Langsam ohne GPU (Abschätzung: 30s für Complex-YOLO)
- Schneller: Seperate Detektion und Klassifikation
- Primär für Lidar Daten
- Für Stereo: Oftmals auf Disparitätsbildern
- Nachbarschaft wird in Punktwolken besser repräsentiert²

² Wang, Yan; Chao, Wei-Lun; Garg, Divyansh; Hariharan, Bharath; Campbell, Mark und Weinberger, Kilian Q.: "Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving". 2018.

Adaptierte Version von [BNB17]³ für Stereodaten

³ Börcs, A.; Nagy, B. und Benedek, C.: "Instant Object Detection in Lidar Point Clouds". 2017.

Adaptierte Version von [BNB17]³ für Stereodaten
Vorgehen:

³ Börcs, A.; Nagy, B. und Benedek, C.: "Instant Object Detection in Lidar Point Clouds". 2017.

- Adaptierte Version von [BNB17]³ für Stereodaten
- Vorgehen:
 - Segmentierung

³ Börcs, A.; Nagy, B. und Benedek, C.: "Instant Object Detection in Lidar Point Clouds". 2017.

- Adaptierte Version von [BNB17]³ für Stereodaten
- Vorgehen:
 - Segmentierung
 - Clustering

³ Börcs, A.; Nagy, B. und Benedek, C.: "Instant Object Detection in Lidar Point Clouds". 2017.

- Adaptierte Version von [BNB17]³ für Stereodaten
- Vorgehen:
 - Segmentierung
 - Clustering
 - Extraktion von Pseudotiefenbilder

³ Börcs, A.; Nagy, B. und Benedek, C.: "Instant Object Detection in Lidar Point Clouds". 2017.

- Adaptierte Version von [BNB17]³ für Stereodaten
- Vorgehen:
 - Segmentierung
 - Clustering
 - Extraktion von Pseudotiefenbilder
 - Klassifikation

³ Börcs, A.; Nagy, B. und Benedek, C.: "Instant Object Detection in Lidar Point Clouds". 2017.

- Adaptierte Version von [BNB17]³ für Stereodaten
- Vorgehen:
 - Segmentierung
 - Clustering
 - Extraktion von Pseudotiefenbilder
 - Klassifikation
- Zusätzlich: Bounding-Box- und Bodenschätzung

³ Börcs, A.; Nagy, B. und Benedek, C.: "Instant Object Detection in Lidar Point Clouds". 2017.

Algorithmus - Segmentierung

Klassen: Sparse, Ground, High-Foreground, Low-Foreground

Algorithmus - Clustering

 Hauptkomponentenanalyse des Clusters

- Hauptkomponentenanalyse des Clusters
- Wichtigste nicht vertikale Hauptachse

- Hauptkomponentenanalyse des Clusters
- Wichtigste nicht vertikale Hauptachse
- Für erste HA: Winkel zur z-Achse bestimmen

- Hauptkomponentenanalyse des Clusters
- Wichtigste nicht vertikale Hauptachse
- Für erste HA: Winkel zur z-Achse bestimmen
- Wenn größer als 45° dann erste Hauptachse

Algorithmus - Extraktion und Klassifikation

Abbildung: Hindernis

Abbildung: Schild

Algorithmus - Extraktion und Klassifikation

Abbildung: Hindernis

Abbildung: Schild

Klassifikation mit CNN: Vehicle, Short Facade, Street Clutter, Pedestrian

Verbesserungen - Segmentierung

Low- und High-Foreground kombiniert

Verbesserungen - Segmentierung

- Low- und High-Foreground kombiniert
- Klassifikation über minimum/maximum anfällig

Verbesserungen - Segmentierung

- Low- und High-Foreground kombiniert
- Klassifikation über minimum/maximum anfällig
- Klassifikation über Varianz

Verbesserungen - Extraktion und Klassifikation

Hauptkomponentenanalyse nicht notwendig

Verbesserungen - Extraktion und Klassifikation

Hauptkomponentenanalyse nicht notwendig

Kleinere Pseudotiefenbilder
- Hauptkomponentenanalyse nicht notwendig
- Kleinere Pseudotiefenbilder
- Median-Filter f
 ür Distanzinvarianz

- Hauptkomponentenanalyse nicht notwendig
- Kleinere Pseudotiefenbilder
- Median-Filter f
 ür Distanzinvarianz
- Nur drei Klassen: Obstacle, Clutter, Pedestrian

- Hauptkomponentenanalyse nicht notwendig
- Kleinere Pseudotiefenbilder
- Median-Filter f
 ür Distanzinvarianz
- Nur drei Klassen: Obstacle, Clutter, Pedestrian
- Kleineres CNN ausreichend

- Hauptkomponentenanalyse nicht notwendig
- Kleinere Pseudotiefenbilder
- Median-Filter f
 ür Distanzinvarianz
- Nur drei Klassen: Obstacle, Clutter, Pedestrian
- Kleineres CNN ausreichend
- Trainingsdatensatz: 2406 Bilder

Verbesserungen - Textur

Für Kitti/Lehr: Farbinformation für jeden Punkt

Verbesserungen - Textur

Für Kitti/Lehr: Farbinformation für jeden Punkt

Wird statt Tiefeninformation genutzt

Verbesserungen - Textur

Für Kitti/Lehr: Farbinformation für jeden Punkt Wird statt Tiefeninformation genutet

Wird statt Tiefeninformation genutzt

 Zum Umfahren von Hindernissen/Fußgängern, bzw. Klassifikation von Schilder

- Zum Umfahren von Hindernissen/Fußgängern, bzw. Klassifikation von Schilder
- Zuerst Ausrichtung bestimmen

- Zum Umfahren von Hindernissen/Fußgängern, bzw. Klassifikation von Schilder
- Zuerst Ausrichtung bestimmen
- Dann Ausdehnung in x und y Richtung bestimmen

- Zum Umfahren von Hindernissen/Fußgängern, bzw. Klassifikation von Schilder
- Zuerst Ausrichtung bestimmen
- Dann Ausdehnung in x und y Richtung bestimmen
- Ausdehnung in z Richtung bestimmen

 Alle Ground-Zellen werden Berücksichtigt

- Alle Ground-Zellen werden Berücksichtigt
- Mittel der z-Werte pro Zelle

- Alle Ground-Zellen werden Berücksichtigt
- Mittel der z-Werte pro Zelle
- Pro Zelle ein Punkt

- Alle Ground-Zellen werden Berücksichtigt
- Mittel der z-Werte pro Zelle
- Pro Zelle ein Punkt
- Ebene mit Methode der kleinsten Quadrate


```
Evaluation - Vorgehen
```

20 von Hand annotierte Punktwolken aus D435

```
Evaluation - Vorgehen
```

- 20 von Hand annotierte Punktwolken aus D435
- Insgesamt 47 Objekte (22 Hindernisse/Fußgänger, 25 Schilder)

```
Evaluation - Vorgehen
```

- 20 von Hand annotierte Punktwolken aus D435
- Insgesamt 47 Objekte (22 Hindernisse/Fußgänger, 25 Schilder)
- Intersection over Union (IoU) von Bounding Boxes

Algorithmus	Detektionsrate	Pr	Rc	F ₁
[BNB17] Lidar [BNB17] Stereo Vorgeschlagen				

Algorithmus	Detektionsrate	Pr	Rc	F ₁
[BNB17] Lidar [BNB17] Stereo Vorgeschlagen	79% 81%			

Algorithmus	Detektionsrate	Pr	Rc	F_1
[BNB17] Lidar		86%		
[BNB17] Stereo	79%	86%		
Vorgeschlagen	81%	89%		

Algorithmus	Detektionsrate	Pr	Rc	<i>F</i> ₁
[BNB17] Lidar		86%	83%	
[BNB17] Stereo	79%	86%	90%	
Vorgeschlagen	81%	89%	92%	

Algorithmus	Detektionsrate	Pr	Rc	<i>F</i> ₁
[BNB17] Lidar [BNB17] Stereo	79%	86% 86%	83% 90%	85% 86%
Vorgeschlagen	81%	89%	92%	90%

Vergleich aktuelle Hindernisserkennung

Vergleich nur auf Basis von Hindernissen

Algorithmus	Durchschnitt Detektionen	liche 2D-IoU Alle Objekte
Hindernisserkennung Vorgeschlagen		

Vergleich aktuelle Hindernisserkennung

Vergleich nur auf Basis von Hindernissen

Algorithmus	Durchschnitt Detektionen	liche 2D-IoU Alle Objekte
Hindernisserkennung Vorgeschlagen	0.48 0.44	

Vergleich aktuelle Hindernisserkennung

Vergleich nur auf Basis von Hindernissen

Algorithmus	Durchschnitt Detektionen	liche 2D-IoU Alle Objekte
Hindernisserkennung	0.48	0.087
Vorgeschlagen	0.44	0.38

Analyse der Rechenzeit

Daten von Referenzsystem vergleichbar mit Fahrzeug

	Mittelwert	Standardabweichung
Segmentierung	2.1 ms	0.49 ms
Clustering	1.2 ms	0.52 ms
Extraktion	0.62ms	0.25 ms
Klassifikation	15 ms	10 ms
Bounding Box	0.73ms	0.29 ms
Bodenschätzung	0.12ms	0.046ms
Gesamt	19 ms	11 ms

 Stereoberechnung mit Semi-Global Block Matching

- Stereoberechnung mit Semi-Global Block Matching
- Kleiner Kameraabstand (0, 54m)

- Stereoberechnung mit Semi-Global Block Matching
- Kleiner Kameraabstand (0,54m)
- Punktwolke ungenau

- Stereoberechnung mit Semi-Global Block Matching
- Kleiner
 Kameraabstand
 (0, 54m)
- Punktwolke ungenau
- Detektion bis ca.
 10m möglich

Echtweltdaten - Lehr

- Bessere Punktwolke
- Einfaches Szenario

- Bessere Punktwolke
- Einfaches Szenario
- Ermöglicht Detektion bis ca. 50m

- Bessere Punktwolke
- Einfaches Szenario
- Ermöglicht Detektion bis ca. 50m
- Detektionsrate: 88%

- Bessere Punktwolke
- Einfaches Szenario
- Ermöglicht Detektion bis ca. 50m
- Detektionsrate: 88%
- Durchschnittliche IoU: 0.53 (2D), 0.43 (3D)

Algorithmus adaptiert und erweitert f
ür Stereo Daten

Fazit

- Algorithmus adaptiert und erweitert f
 ür Stereo Daten
- Verbesserungen f
 ür Stereo Daten

Fazit

- Algorithmus adaptiert und erweitert f
 ür Stereo Daten
- Verbesserungen f
 ür Stereo Daten
- Verbesserungen gegenüber aktueller Hinderniserkennung

Fazit

- Algorithmus adaptiert und erweitert f
 ür Stereo Daten
- Verbesserungen f
 ür Stereo Daten
- Verbesserungen gegenüber aktueller Hinderniserkennung
- Ergebnisse auf Echtweltdaten abhängig von Punktwolke

Mögliche Verbesserungen

Besseres Stereo Matching

Mögliche Verbesserungen

- Besseres Stereo Matching
- Segmentierung durch MLP

Mögliche Verbesserungen

- Besseres Stereo Matching
- Segmentierung durch MLP
- Klassifikation immer über Farbbild

Abkürzungen

CNN Convolutional Neural Network
D435 Intel[©] RealSense[™] Depth Camera D435
GPU Graphics processing unit
IoU Intersection over Union

Abschätzung Laufzeit

	Titan X	Fahrzeug
YOLO	33ms	46s
Complex-YOLO	20ms	ca. 31s

CNN

Segmentierung - Punktweise

Segmentierung - Zellenweise

Clustering und Bounding-Box Schätzung

Durchschnitt 2D 0.444 Durchschnitt 3D 0.321

Klassifikation

Evaluation - Verbesserungen

Vorgeschlagen:

Kategorie	Anzahl	Pr	Rc	F ₁
Obstacle/Pedestrian	20	100%	84%	91%
Sign	18	78%	100%	88%
Durchschnitt/Summe	38	89%	92%	90%

[BNB17]:

Kategorie	Anzahl	Pr	Rc	<i>F</i> ₁
Obstacle/Pedestrian Sign	20 17	100% 71%	80% 100%	89% 83%
Durchschnitt/Summe	37	86%	90%	86%

Bodenschätzung

Evaluation Lehr

Durchschnitt 2D	0.53
Durchschnitt 3D	0.43

