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1 Introduction

In recent years many improvements in driver assistance systems have been made
[MGLW15]. Vehicle manufactures and researchers aim to produce fully self driving
vehicles in the next years. Such vehicles are able to drive according to the traffic
rules without human involvement. For this a wide variety of algorithms have to be
developed, implemented and tested. These algorithms need to be reliable to guarantee
the safety of the passengers and all other road users. Additionally the algorithms are
required to process the sensor data in real time to guarantee a timely response of the
vehicle.

To get students interested in the topic of self driving systems and driver assistance
systems the University of Technology Braunschweig organizes the Carolo-Cup. The
aim of the competition is to build an automated Radio Controlled (RC)-Car at a
scale of 1:10. The vehicle needs to master a scenario which is derived from scenarios
that occur in the real world and drive as far as possible. The scenario consists of the
track with road markings, crossings, obstacles, signs, pedestrians and slopes. Each of
these features need to be detected by the vehicle in real time.

Ulm University is participating in this competition with a group of students. The
primary sensors of the vehicle are a colour camera and an Intel©® RealSense™ Depth
Camera D435 (D435) which captures a point cloud.

The objective of this work is to implement an algorithm which is able to robustly detect
and classify all objects occurring on the track, that are signs, obstacles, pedestrians
and slopes, using the point cloud provided by the D435. The algorithm used for the
detection should be able to process the data in real time with the limited resources
available on the vehicle to be able to be used on the vehicle.

Additionally the algorithm should be evaluated on point clouds acquired in the real
world using a stereo camera system. For this data from the MEC-View project [Hen19]
and the Kitti dataset [MG15] is used.

The thesis is structured in four chapters: in Chapter 2 the theoretical background
required for the thesis is explained. Chapter 3 introduces the algorithm used for
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object detection. In Chapter 4 the performance of the algorithm is evaluated and
compared to other algorithms. Lastly the results are summarized and possible future
improvements are listed in Chapter 5.



2 Theoretical Background

This chapter will introduce the fundamentals necessary to understand the following
chapters. The first section will define the coordinate systems used in this thesis. Next
point clouds are introduced and algorithms and sensors for generating them are pre-
sented. The following section will present an efficient connected components labeling
algorithm. The next section explains artificial neural networks and Convolutional
Neural Networks (CNNs). In the last section the Principal Component Analysis (PCA)
is introduced.

2.1 Coordinate Systems

2.1.1 Vehicle Coordinate System

According to ISO 8855 [ISO11] a vehicle axis system is defined with the x-axis pointing
horizontally forward. The y-axis is horizontal as well, pointing left with respect to
the forward direction. The z-axis points upwards, so that it forms a right handed
trihedron. The rotation around the z-axis is referred to as roll, the rotation around
the y-axis as pitch and the rotation around the z-axis as yaw or heading. The vehicle
coordinate system is defined by the vehicle axis system and the vehicle reference point,
that is the origin of the coordinate system.

If not stated otherwise this work will use this coordinate system with the vehicle
reference point located in the centre of the camera.

2.1.2 Image Coordinate System

For images the coordinate system consists of a z-axis pointing right and a y-axis
pointing downward. The origin of the coordinate system is in the top left of the image.



4 Theoretical Background

Figure 2.1: Vehicle Coordinate System (Source: Own illustration)

>

v

Figure 2.2: ITmage Coordinate System (Source: Own illustration)

2.2 Point Clouds

A point cloud is a set of points in space, that is usually the R3. A point cloud is
either created artificially or more commonly captured by a sensor, in this case the
point cloud gets sampled from a 3D object [RC19].
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Figure 2.3: Example of a point cloud with additional colour information

Each point in a point cloud is usually represented by a vector consisting of the x, y
and z coordinate. In addition to the coordinates more information can be stored for
every point. Commonly used values are the reflectivity, surface normals or the colour
of each point.

Figure 2.3 shows a point cloud which depicts an urban scene, the point cloud is
generated from the Kitti dataset [MG15]. In addition to the points in space there is
also colour information for every point. This additional colour information is often
referred to as texture [RC19].

2.2.1 Stereo Vision

By taking pictures from a scene from two positions it is possible to calculate distance
information from the scene by exploiting the difference between the images [Fo110].
This process is called stereo vision and is similar to what the human brain does with
the information of two eyes.

In general, stereo vision is based on matching a pixel found in one of the images to a
pixel in the second image. The distance between the two positions of the pixels is
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called disparity, which is inverse proportional to the actual distance of the point. By
combining the disparity for every pixel into an image at the corresponding position a
disparity image or disparity map is created.

Figure 2.4: Example of a disparity map

Figure 2.4 shows a disparity map generated from the Kitti dataset [MG15], the
disparity values are mapped onto different colours, with orange being large disparities
and blue small disparities.

In the following sections two algorithms for the calculation of disparity maps are
presented.

Rectification

For a pixel in one of the images all possible points in the real world are located on
a line [F6110]. In the second image this set of points is visible as a line, which is
called the epipolar line. As all pixels that can possible correspond to a pixel in the
first image lie on the epipolar line on the second image it is sufficient to only search
for matches on this line. To simplify the matching it is beneficial for the epipolar
line to be straight and horizontal. This is achieved by rectifying the image, that is
transforming the images, such that all epipolar lines are horizontal. This results in
transformed images which appear to be taken with two cameras with only horizontal
displacement and no relative rotation.

Figure 2.5 shows the views of a stereo system with the left camera, positioned at Op,
and the right camera positioned at Og. All points X, X, X, and X3 are located on
a straight line and are projected to the same pixel X in the left image. In the right
image the points are located on a straight line, this line can be seen as the red line.
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Left view Right view

Figure 2.5: Point as part of the epipolar line (Source: Arne Nordmann [cc
by-sa 3.0])

All possible matches Xy for the pixel X are located on this epipolar line. As the
epipolar line is not horizontal the images require rectification.

Rectification is done by linear transforming the images. For this a transformation
matrix H, so that an image point p is transformed into p need to found.

Semi-Global Matching

Semi-Global Matching [Hir05] [Hir08] is one the most commonly used [F6110] algo-
rithms for calculating disparity maps, primarily based on the fact that it is able to
run in real time while still producing precise results [Sch19]. The algorithm performs
dense stereo matching, this implies that for nearly every pixel a corresponding pixel
is found. The algorithm combines the advantages in computational performance of
pixel wise matching with the advantages in quality of a global cost function, which
considers the complete image for matching.

The global cost function is accumulated over eight directions: both vertical directions,
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and horizontal directions and the diagonal directions. For every direction the cost
function is calculated independently.

The cost function is calculated by scanning the image along the respective directions.
This reduces the problem from a two dimensional problem to multiple one dimensional
problems on a scanline [DHAH14].

Along this scanline a similarity function C': (p,d) — R is calculated. This function
represents the similarity of a pixel p to a pixel p with disparity d. This similarity can
be calculated by comparing the intensity at the position p with the intensity at the
pixel p. This second pixel is the pixel on the epipolar line with a distance of d from p.
The algorithm selects a disparity for every pixel. As the pixels next to each other are
not independent of each other the similarity of the disparity, that is the smoothness of
the resulting disparity map, should be enforced. For this a loss function Lpirection (P, @)
considering the neighbouring pixels is defined, using the constants P; and P, as non
smoothness penalty:

n; = LDirection(p - 1: d + 2) (21)
LDirection(p> d) = C(]% d) + min{no, ni+ P,n_y + P, min<ni) + P2} (2-2)

The loss is calculated twice along the scanline, first in a forward pass and secondly
backwards along the scanline. For every pixel a loss over all directions is calculated
as the sum of the losses in the different directions:

Loveran (pa d) = Z Lpjrection (pa d) (2'3>

Direction€All Directions

Using the overall loss for every pixel the disparity d for a pixel p can now be calculated
as the disparity with the lowest loss, to speed up the computation a maximum disparity
Amax 18 used:

d(p) = argminde{o,...,dmax} (Loveran(p; d)) (2.4)

Calculating point clouds from Disparity Maps

Given the parameters of the individual cameras such as the focal length, and the
parameters of the stereo system such as the translation and rotation between the
two vantage points it is possible to compute the real world distances and as a result
positions of pixels relative to the camera [Fed11]. Taking all these pixels as points in
three dimensional space a point cloud can be calculated. By additionally mapping
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the colour of each pixel onto the corresponding point a texture for the point cloud
can be calculated.

Given the disparity d(z,y) at a pixel (z, y)T and the corresponding calibration matrix
@ for the stereo system the position of the point in 3D space can be calculated:

X T
Y| _ Yy
z| = @ |day (25)
w 1
1 X
@eal world —|Y (26)
Wiz

Depth Error Estimate

For many applications it is desirable to estimate the error of the depth measurement
of a stereo system. The depth error can be estimated given the distance d to the
object, the baseline b that is the distance between the cameras, the focal length f of
the cameras and pixel matching error ¢4 [GFMPOS]:
d2
EX —= "€ 2.7
e (27)

2.2.2 Active Stereo Systems

Passive vision based stereo systems have issues with textureless surfaces as no un-
ambiguous correspondences can be found [GWTW19]. Additionally passive vision
systems perform poor matching if the scene is not illuminated well. To solve both
issues an active system can be used. These systems use a projector to project an
pattern onto the surface and thus provide a texture for every surface. No a priori
knowledge of the pattern or adaptation of the stereo matching algorithm is required
[GWTW19]. To achieve unambiguous matches a non periodic pattern should be
chosen, this can be done by using a semi-random pattern.

The D435 uses a projector which projects about 5000 points in a semi-random fashion
using a laser projector [GWTW19].



10 Theoretical Background

2.3 Connected Components Labeling

Connected components labeling is used to find connected nodes in a graph. Two
nodes n and m of the same class are connected if there exists a path between them
consisting entirely of nodes of their class [GWO06]. The algorithm takes the graph as
the input and returns for every class a set of nodes that belong to the class.

The algorithms for connected components labeling can be differentiated in one com-
ponent at a time algorithms, which label objects separately [AQIS07], and multipass
algorithms which iterates over the nodes multiple times [HCSO08].

[HCSO08] proposed an efficient two pass algorithm for connected components labeling.
The algorithm is designed to be used with images. For images every pixel represents
a node in the graph. The eight adjacent pixels of a pixel are the neighbouring nodes.
As the number of neighbours is bounded the algorithm runs in O(n) with n being the
number of pixels.

The algorithm is explained in algorithm 1: first for every pixel a preliminary class
is determined based on the neighbouring pixels, additionally equivalent classes are
remembered. In the second step all identical classes are merged into the class with
the lowest number.
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Algorithm 1 Connected Components Labeling

1: procedure CONNECTEDCOMPONENTSLABELING (nodes)

2 clags < —1 for every node € nodes

3: currClass < 0

4 mappingToMinimal <— empty dictionary

5 for node € nodes do > First pass: label all by neighbours, remember
equivalent classes

6: equivalentClasses < ()

7 for neighbour € neighbours of node do

8: if sameClass(node, neighbour) A class[neighbour] >= 0 then
9: equivalentClasses < equivalentClasses U {class[neighbour]|}
10: if equivalentClasses = () then

11: currClass < currClass + 1

12: class[node| < currClass

13: else

14: minClass =< min(equivalentClasses

15: for class € equivalentClasses \ {minClass} do

16: mappingToMinimal[class] = minClass

17: for node € nodes do > Second pass: merge equivalent classes
18: while class[node| € mappingToMinimal do

19: class[node| <— mappingToMinimal[class[node]]

2.4 Artificial Neural Networks

Artificial Neural Networks are algorithms, that mimic the human brain [HH52]. They
consist of a set of neurons connected together as a graph. Each neuron takes a number
of inputs, combines them with a given formula and produces an output, which is then
propagated to the next neuron. The parameters of the formula can be changed to
adapt the output of the neural network.

For most neural networks there are two main phases [Bis95]: first learning, that is
adapting the parameters to fit a certain function and forwarding, that is calculating
the output for data the neural networks has not seen before.

There are three different paradigms for learning: unsupervised learning, which is used
for tasks such as feature extraction and clustering, reinforcement learning, which
is used if a reward can be defined but no ground truth data exists, and supervised
learning which is used if labeled ground truth data exists. As this is the case for the
neural network used in this thesis, only supervised learning will be explained in the
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following section.

In the following section first a simple neural network, the Multilayer Perceptron (MLP)
is explained. Then the Convolutional Neural Network (CNN) is explained as a special
case of a MLP.

2.4.1 Neuron

[HH52] modeled the activity of a neuron in the human brain with a continuous
differential equation. For larger neural networks this differential equation gets to
complicated. Thus the model has been simplified [Bis95]: The output is determined
by calculating the weighted sum of all inputs z; and adding a so called bias b. To
be able to approximate nonlinear functions a nonlinear transfer function f is then
applied for every neuron:

y:f(b—i- ikak> (2.8)

k=1

The structure of a neuron can be seen in Figure 2.6, the inputs z; to x,, are on the
left side of the neuron. Each of the input values is weighted and the values are then
summed up in the neurons. Lastly the transfer function is applied, the output value
y is at the right side of the neuron.

T
Wi
T2
Wa
> v
W,
Tn
b

Figure 2.6: Structure of a neuron (Source: Own illustration)
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Commonly used functions are [Bis95]: the Heaviside function:

H(z) = {1 r=0 (2.9)

0 otherwise

the logistic or sigmoid function:

1

—_— 2.1
() = o (2.10)
or the Rectified Linear Unit (ReLU)-function:
ReLU(z) = max(z, 0) (2.11)

The function approximated by a neuron is determined by the weight vector @ and
the bias b. To change this function these parameters need to get adapted during the
training process.

[Heb49] proposed the following algorithm for learning:

wi(t) = wi(t —1) + Awg(t) (2.12)
Awi(t) = n(t) - wx(t) - 6(t) (2.13)

b(t) = b(t—1)+ Ab(t) (2.14)
Ab(t) = n(t)-i(t) (2.15)

This set of equations adapts the weights wy, at time ¢ proportional to the error (t),
the input z; and the learning rate 7(t). The error §(¢) is the difference between the
ground truth output 7, and the actual output y,:

0(t) = Ty — Yo (2.16)

The learning rate is a function which determines the rate of convergence, if n(t) is set
too high the error tends to oscillate, if n(t) is to low the neuron requires more steps
to converge.

For a single neuron it is not possible to approximate every function, an example for a
function that can not be approximated is the XOR function [MP69]. Thus multiple
neurons are connected to build a MLP.
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2.4.2 Multilayer Perceptrons

The neurons in a Multilayer Perceptron (MLP) are ordered in layers, with the output
of each neuron connected to the neurons in the following layer and the inputs to the
neurons of the preceding layer. For each neuron in a layer the neuron is connected
with all neurons of the preceding layer. This is why this kind of layer is often referred
to as a fully connected layer.

The structure of an MLP can be seen in Figure 2.7, this neural network consists of
three layers with five, four and three neurons each respectively.

Input Hidden Layer 1 Hidden Layer 2 Output

Figure 2.7: Structure of a MLP with two hidden layers (Source: Own illustra-
tion)

In contrast to a single neuron, an MLP with two layers and a continuous, bounded
and non constant transfer function in the first layer and the identity as the transfer
function in the second layer is able to approximate every continuous function in a
bounded interval [Hor91].

Learning in MLPs is done using Stochastic Gradient Descent (SGD) [RM51]. This
algorithm aims to minimize a function, in this case the error function, iteratively
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by adapting the arguments depending on the derivative or gradient of the function,

where 7 is the learning rate:

OE(w)
ow

w(t) = w(t — 1) — n(t) (2.17)

The error is calculated based on the output of the neural network y, € R™ which
consists of the output of the individual neurons in the last layer and the ground truth
data T,. Commonly used error functions are Mean Square Error (MSE):

E(w) =T, - ya* (2.18)

If the output of the network is a discrete probability density function the error
can be calculated as the cross entropy, which is a measure for the similarity of two
distributions, between the training data and the output:

Bw) = = 3 () log (T () (2.19)

To get a smoother error it is not calculated for a single input but over multiple inputs
and an average is calculated. The set of samples is called a batch, the size of the
batch influences the training performance. If the batch size is too large the training
requires more time, if the batch size is too small the error tends to oscillate.

For many classification tasks the neural network should predict a certainty value for
every class. This is achieved by using a output layer with a neuron for every class,
thus the output can represent a discrete probability density function. To have a valid
probability density function the softmax transfer function is used, for a vector u € R"
it is defined as:

exp(u(k))

(softmax(u))(k) = " exp(u(i))

(2.20)

2.4.3 Convolutional Neural Networks

In recent years impressive results in computer vision have been achieved. Most of
them are thanks to the rise of convolutional networks, such as AlexNet [KSH12],
which showed exceptional results in the ImageNet [DDST09] competition.

In contrast to fully connected MLPs, one value of the output of a layer, often referred
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to as a feature map for CNNs, is not influenced by all inputs, but only by inputs
which are close to the output [LBBH98]. To exploit this simplification the input data
requires some kind of spatial relation, for images this relation is defined by pixel
neighbourhood.

As the name already suggest forwarding in a CNN is done by convolving the input
data with a set of filters. As CNNs use comparably small filters instead of fully
connected layers, the number of learnable parameters can be greatly reduced for large
inputs. This reduces the time required for learning and forwarding and thus allows
for larger inputs.

For an input I with width w, height h and ¢ channels, and a filter K of size (2 -n +
1) x (2-m+ 1) x ¢ the two dimensional discrete multichannel convolution is defined
as:

(IxK)(y,x) = Zn: i i[(y—l—i,x—l—j,k‘)-K(n—i,m—j,k) (2.21)

i=—n j=—m k=0

If there are f filters the resulting tensor is of size w x h x f.

To increase the size of the receptive field and decrease the size of the image downsam-
pling is often used after a layer. This is often achieved by using pooling operations
[SMB10] such as max pooling. Max pooling combines the pixels over a certain window,
usually this window is square-shaped, by taking the maximum value of the pixels.
This window is shifted over the input and a new image is formed, often this is not
done at every position but with a stride, that is the number of pixels the window is
moved in each direction, larger than one.

116 | 35 134

134 82 | 187 Max Pooling 137 | 201

164 113 | 166 254 | 182
19 | 65 155

Figure 2.8: Max Pooling with a pooling size of 2 x 2 and a stride of 2 (Source:
Own illustration)

Figure 2.8 shows an example of a max pooling operation. The window, depicted by
the coloured squares, is a rectangle of size 2 x 2, the stride for the pooling operation
is 2. This reduces the width and the height of the image by a factor of two each.
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2.5 Principal Component Analysis

Given a set or cluster of points in R" it is often useful to determine the orientation of
this cluster. The orientation can be described by a new coordinate system which is
translated and rotated relative to the original coordinate system.

To determine this coordinate system the directions with the greatest variance in the
data need to be found. The first axis found by the PCA is the axis with the largest
variance. The following axes are all calculated by finding the axis with the largest
variance that are orthogonal to the preceding axes without taking the variance along
the preceding axes into account. PCA is an algorithm for finding those axes and thus
allows to describe the points by these principal axes.

T
In Figure 2.9 the primary direction of the points is (\/g : \/g) , this is the first axis

of the PCA. The second axis is orthogonal to the first axis, in this two dimensional
example this is sufficient to determine the second axis.

A

>

T

Figure 2.9: PCA for a cluster of points (Source: Own illustration)

To calculate the PCA first the mean of the data needs to be calculated [Pea01]. Given
a set of points P = {p1, P2, ..., D} the mean piean is calculated as:

1
_"mean = 7 2.22
p 2.7 (2.22)

peEP
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For each point p' the deviation from the mean can be calculated as p, this yields the
set of deviations P:

—

ﬁ: p—= ﬁmean (223)

Out of these points a matrix B can be formed:

Yy
~—

B=p p - bm (2.24)

(' is the covariance matrix of B:

1

n—1

C= B'B (2.25)

The eigenvectors of C' form the transformed coordinate system, the eigenvalues
measure the variance along this direction [Hot33]. By sorting the n eigenvalues by
their respective eigenvectors a list of eigenvectors vy, Us, . .., ¥, can be determined. o
represents the direction with the largest variance in the data.

2.5.1 Least Squares Optimization

Using the first 72 of the n eigenvectors of the PCA and the mean of the cluster an
affine subspace is defined. The sum of the squared distance of the points in the cluster
to this affine subspace is minimal [Pea01].

For points in R? the PCA yields three eigenvectors and the mean of the points. The
first two eigenvectors and the mean define a plane in R?.

The sum of the squared distance of each point to the plane is minimal. Thus the
plane is a good approximation for the points in the cluster.
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This chapter will present the algorithm used for the object detection. First the
conditions imposed by the vehicle and the Carolo-Cup regulations are listed. Next
the algorithms currently used for obstacle-, sign-, pedestrian- and slope-detection
and their drawbacks are presented. Next related work is presented, thereafter the
algorithm that provides the basis for the proposed algorithm is presented. Lastly the
changes to the algorithm that improve the performance on dense stereo point clouds
are presented.

3.1 Conditions Imposed by the Carolo-Cup
Regulations

3.1.1 Carolo-Cup

The Carolo-Cup is an international student competition in which students have to
develop and build an automated 1:10 scaled model car. The competition is held in
Braunschweig, annually since 2008. It consists of three disciplines: the presentation
in which the team has to explain their concept in front of a jury, free drive which
requires the vehicle to drive as many meters as possible on a simple track and obstacle
course which consists of a track with intersections, pedestrian crossings, speed limits,
obstacles and pedestrian islands in abstracted form.

The possible situations and objects are defined by the Carolo-Cup regulations [Bral§].
In the following passage the aspects of the regulations which are relevant for this
thesis are explained in more detail.
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Obstacles

Obstacles, which represent other vehicles, can be present anywhere on the track. If
they are on the same side of the road as the vehicle they need to be passed. If they
are waiting at intersections the right of way has to be observed.

Obstacles are white boxes with a width of 100 to 400mm, a height of 100 to 240mm
and a minimal length of 100mm. They are either static or dynamic, if they are
dynamic they move at a speed of 0.6m/s.

Pedestrians

Pedestrians can wait on the side of a track, if they are next to a crosswalk the vehicle
has to let them pass.

Pedestrians are represented by white boxes with a width of 100mm and a height of
150mm. Solely by their size or shape, pedestrians can not be differentiated from
obstacles, to differentiate them a black stick figure is visible on the side of the box
facing the vehicle.

Signs

Traffic signs are placed to the right of the track and mark speed limits, intersections,
crosswalks, expressways, sharp turns, barred areas, no passing zones and slopes. They
are placed at a height of 150mm. Their width and height is between 100mm and
150mm depending on the type of the sign.

Slopes

Parts of the track can consist of slopes of up to 10%. Each of the features that can
occur on the track can occur on the slope as well. Usually a single ramp, that is an
incline, followed by a flat part and a decline exists on a track.
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3.1.2 Vehicle

All vehicles are based on a 1:10 RC-chassis, for the computations an Intel Next Unit
of Computing (NUC) Skull Canyon is used. The main sensors are a colour camera
and depth camera.

Depth Camera

The depth camera used in the vehicle is an D435. It uses a stereo camera system and
an infrared projector for active stereo [Int19]. The depth camera has a resolution
of up to 1280x720 and can acquire up to 90 Frames per second (FPS) at a lower
resolution. At the full resolution the camera provides a maximum frame rate of 30
FPS. Additionally the D435 provides a colour image, due to the poor performance of
the sensor the image is not usable if the vehicle is moving.

The vehicle is equipped with a single D435 pointed forward. The maximum range of
the camera is approximately ten meters.

Software Environment

The software on the vehicle is written in C++ and using Automotive Data and
Time-Triggered Framework (ADTF) as framework for communication and scheduling.
To guarantee a fast response of the vehicle to an input all software running on the
vehicle needs to meet certain soft real-time criteria, this means in particular, that all
algorithms need to run in a fixed time most of the time. For the perception layer
of the software the maximum runtime of every perception is bound to the sampling
period of the respective sensor.

Maximum Required Detection Distance

The vehicle drives with a maximum speed of 5ms~! during the free drive, the maximum
braking acceleration possible is 5ms™ . The processing delay of the complete software
of the vehicle can be calculated as the sum of the individual delays of the components:
the D435 introduces a delay as a result of the limited frame rate. All parts of
the vehicle software, that are the object detection, the tracking, the planning, the
trajectory planning and the controller are estimated by the maximum time each
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module is allowed to run, this time is given by the frequency at which the respective
module gets called. The latency of the hardware is defined by the frequency at which
messages get sent to the motor controller.

tD435 + tdetection + ttracking (31)

tplanning + ttrajectory + tcontroller + thardware
33ms + 33ms + dHms + 5ms + dms + dHms + 10ms = 96ms

tprocessing

+ IA

The maximum distance for the vehicle to stop can be calculated as the sum of the
distance the vehicle drives during the processing time and the braking distance:

1 02
max
Umax * tprocessing + 5 a (32)
braking

1 (5m s_l)2
— -1, I
= 5dms  -0.096s + 5 Fma?

= 0.48m + 2.5m = 2.98m

Thus it is for the detection sufficient to detect objects at a distance of up to three
meters.

3.2 Current State

At the moment the obstacles and the signs are detected by two different detectors.
As a result obstacles are often detected as signs and vice versa, and thus require
additional filtering. Additionally both algorithms yield poor results when the ground
is not at a constant height.

3.2.1 Obstacle Detection

The obstacle detection was initially developed as part of a Bachelor’s Thesis [Deb12].
For the detection all points at a fixed height relative to the camera are extracted from
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the point cloud, this height is 0.1m above the ground as this is the minimum size of
obstacles. This reduces the detection to a two dimensional problem and decreases the
number of points. Figure 3.1 shows the points (in red) extracted from a point cloud.
The vehicle is visualized by the blue circle on the left side of the figure.

For the detection all points on this plane are clustered using the DBGridScan-
Algorithm [Meil6]. In the last step a bounding box is estimated, for the estimation
the algorithm differentiates between so-called I- and L-Shapes. I-Shapes are objects
with only one side visible in the point cloud, L-Shapes objects of which two sides can
be seen in the point cloud. For I-Shapes the bounding box is assumed to be square,
the length of all sides is estimated to be the same as the length of the visible side.
For L-Shapes the bounding box is assumed to be a parallelogram, for this the fourth,
not visible, corner is calculated based on the three visible corners.

(L

Al

Figure 3.1: Top down view of the points used for the DBGridScan-Algorithm

Most steps of the detection are done in two dimensions, assuming that the ground
is at a constant height. Due to the introduction of slopes (see 3.1.1) in 2017 this
does not hold anymore. As a result the algorithm detects these slopes as obstacles.
Furthermore it does not detect obstacles if these obstacles are at a different height
than expected due to a slope.
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To avoid false positives the detection is done at three heights independent of each
other. Then it is checked for every obstacle if it is present on all three heights, for
slopes this is not the case. This solves the problems related to false positives but does
not help with the true negatives: obstacles which do not get detected as they are at a
different height than expected due to a slope.

3.2.2 Sign Detection

As the computer on the vehicle has only a limited amount of computational resources
the detection can not be done with state of the art detectors such as R-CNN [GDDM13],
Single-Shot-Detector [LAE*15] or YOLO [RDGF15]. The detection of the traffic
signs is done with the depth data of the D435. The detection estimates a bounding
box for the signs, this bounding box gets mapped into the image of the main camera
and an image is extracted. This image is then classified using a CNN.

Multiple lines are scanned in the depth image to find large differences in distance
which resemble an edge. With these edges bounding boxes for sign candidates are
extracted, these candidates are filtered based on their size, position and form. The
CNN then determines if the candidate is a valid sign and the type of the sign if it is
one.

Figure 3.2 shows a disparity map of the camera. The lines along which the image is
scanned, detected edges along these lines and filtered candidates are highlighted.

Similar to the obstacle detection the sign detection has difficulties with signs which
are not on the expected height. Therefore some signs which are located on slopes do
not get detected.

3.2.3 Pedestrian Detection

The detection of pedestrians is done twofold: as pedestrians are valid obstacles they
get detected by the obstacle detection. This is done primarily to detect moving
pedestrians at crosswalks. As there are no obstacles on crosswalks the contextual
information can be used to differentiate between obstacles and pedestrians.

Due to the small field of view of the D435, pedestrians standing next to the road can
not be detected by the obstacle detection. The detection of these pedestrians is done
with a simple blob detector in the camera image if the vehicle is at a crosswalk.
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Figure 3.2: Lines scanned by the sign detection

3.2.4 Slope Detection

At the moment the slope of a ramp can not be detected by the vehicle. At the start
of every slope there is a sign which signals the oncoming slope, if this sign is detected
the vehicle decreases its speed. Due to the problems listed above the sign is often not
detected. Additionally there are problems with the lane and road markings detection
on the ramp, this is because the complete image is warped on the ramp and as a
result the extrinsic calibration is wrong and distances are estimated wrongly.

3.3 Related Work

In recent years many algorithms for object detection in point clouds have been
proposed. Most of them do an end-to-end detection using a large CNN [YT17]
[YLU19] [SMAG18] [Lil6], for these networks the data is usually represented by
voxels, which are pixels in the three dimensional space, or by a two dimensional
map-like representation. Due to the limitations in computational performance on
the vehicle and the real time constraints it is not possible to use such a deep neural
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network for this task. Faster algorithm rely on a separate detection and classification
of the objects: first objects are detected in the point cloud, often using a clustering
algorithm, then each cluster is classified. For the clustering often an occupancy map is
used, for most algorithms the classification is done with a learned classifier such as a
support vector machine [HHW10], k-nearest neighbours [YSF*18] or a CNN [BNB17].
Most of these algorithms are intended to be used with point clouds captured using a
Lidar system.

For data acquired from stereo systems many algorithms use the disparity map for
detection [GMA18] [LXM*16]. [WCGT18] discovered that the performance of object
detection can be vastly improved by representing the data as a point cloud which
correctly represents spatial relations, instead of disparity maps in which neighbouring
pixels are not required to belong to the same object.

3.4 Algorithm

The following section introduces the proposed algorithm for object detection. The
algorithm works in multiple steps: At first the algorithm decides for all points if it
belongs to an object of interest, this step is referred to as segmentation. Next all
points of interest are clustered to form objects. In the last step of the detection every
cluster gets a type assigned. This is done by extracting a pseudo depth image for
every cluster and classifying each depth image with a CNN.

The algorithm is an improved version of [BNB17] to be used with point clouds
generated from stereo systems instead of Lidar. It uses the point cloud as an input
and detects the objects and determines the type of each object. First the original
algorithm is presented, then the improvements which enable the detection in stereo
point clouds are presented.

Additionally to the improved algorithm of [BNB17] a bounding box is estimated for
every cluster. Using points which do not belong to a cluster the ground is estimated
by fitting a single plane.
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3.4.1 Segmentation
Grid

All points of the point cloud are inserted into a grid. This is done by fitting a grid onto
the x-y-plane, with the coordinate system defined like in section 2.1.1. The cells of the
grid are equally sized. To reduce the number of points which need to be considered
a region of interest for the grid is defined. For a point p given by p'= (z, v, z)T, the
region of interest is a function which defines for every point if it is of interest:

ROL(5) = (0.2 < < 3) A (y] < 2) A(~0.3 < z < 0.3) (3.3)

The cell a point belongs to is determined by projecting the point onto the z = 0 plane.
The point is then inserted into a set of points for the respective cell.

A cell ¢ is represented by a set of points:

c={P1, D2 ..., Dn} e €ER? ke {l,...,n} (3.4)

Classification

The algorithm determines for every cell a type, the types are: Sparse, Low Foreground,
High Foreground and Ground. The type Sparse is for cells which consist of few points,
this is the case for cells which can not be seen by the sensor, either due to occlusion
or due to the limited field of view. The type Low Foreground is for all points which
are part of an object such as cars and pedestrians, the type High Foreground is for
points which belong to tall objects such as walls, the type Ground is for points which
are part of the ground.

The type of each cell is calculated on the basis of the points in each cell. [BNB17]
propose to determine the type of each cell based on the number of points, the minimum
and the maximum height of all points in the cell.

Cells with less than eight points are assigned the class Sparse. If the difference between
the maximum and minimum height of the points in a cell is smaller than a predefined
value the cell is labeled as ground. A cell is classified as High Foreground if either the
maximum height is larger than a threshold or the difference between the maximum
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and minimum height is larger than a threshold. All other cells are classified as Low
Foreground.

3.4.2 Clustering

In the next step of the detection pipelines object candidates are extracted. This is
done by clustering cells belonging to the class foreground. To improve the accuracy
of the clustering it is done on a coarse and a fine level.

Two cells ¢ and d belong to the same object if the coarse merging criterion mcoarse 1S
fulfilled:

MCoarse (6, d) =| max (z) — max (2) <0.05 (3.5)
(x,y,z)Tec (x,y,z)TEd
This yields clusters in which all cells have a similar maximum height. For the clustering
the connected components labeling algorithm presented in section 2.3 is used.

The coarse clustering limits the resolution of clusters to the size of a cell, to improve
the accuracy clustering on a subcell level is performed. This is done by splitting every
cell in a three times three grid, similar to the grid used for segmentation.

To be able to split objects which are close to each other [BNB14] proposed to do the
second clustering step on the basis of the density of the cell. For this the ratio of the
densities of two neighbouring cells is used. The criterion mg;,e, which indicates if two
subcells ¢, d belong to the same objects is:

max (|| ,|d])
Mpine = ——————~ < 10 3.6
e min(e] | d]) (3:6)
This clustering step is only used to split objects which are close to each other, no
existing clusters are merged.

3.4.3 Extraction

After clustering each object needs to be classified. As small obstacles are of a similar
size as signs it is not possible to classify the objects solely by size, the shape of the
objects need to be taken into account as well. For such tasks CNNs have proven to
be a robust tool for classification.
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As the algorithm is required to process frames in real time it is of great importance
to reduce the time required by the CNN. The runtime of the classifier can be greatly
reduced by reducing the number of inputs. To achieve this the dimension of the input
data has been reduced: instead of representing the data by the three dimensional
point cloud of every cluster it is represented by a pseudo depth image of the cluster.
[BNB17] try to ensure a side-view of the cluster by estimating the heading of the
cluster.

To determine the heading the principal axes of the cluster are calculated. This is done
by calculating the PCA over all points that are part of the cluster. The PCA yields
three eigenvectors v7, Up, U5 with three corresponding eigenvalues A1, Ag, A3 and the
mean of the cluster pean.

The eigenvalues correspond to the variance of the cluster in the direction of the
corresponding eigenvector. To represent this ordering the eigenvectors o, s, U3 are
sorted in descending oder by the corresponding eigenvalues and then normalized, this
yields the ordered and normalized eigenvectors 9y, 9, 05. To estimate the heading
either ©; or ¥y is chosen, this depends on their respective orientation. For this the
angle « is calculated as the angle between the eigenvector and z-Axis:

o =

arccos ((0 0 1) 51>‘ (3.7)

For objects with the principal axis pointing primarily horizontally « is larger than 45°,
in this case ¥sqe is 91. For objects with the principal axis pointing primarily vertical
(v < 45°), 0y is chosen as Usge-

Using ¥gqe the heading vector ¥heading can be calculated as the horizontal vector
pointing in the direction of the heading:

* Uside

(3.8)

Vheading =

* Uside

(=l e =R
S = O o = O

o O O oS O O

For the calculation of the depth image all points need to be projected onto an image
plane. The axes of the depth image coordinate system are the heading of the cluster
as the z axis and (0,0, —1)" for the y axis, the z axis is defined by z X 1.
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All points are mapped into the depth image coordinate system. In this coordinate
system the bounding box of the cluster is determined by the respective minimum and
maximum values:

Tmin = min () (3.9)
(x,y,z)Tec

Tmax = max (z) (3.10)
(w,y,z)Tec

Ymin = min (y) (3.11)
(x,y,z)Tec

Ymax = max (y) (3.12)
(z,y,z)TEC

Zmin = min (2) (3.13)
(x,y,z)TEC

Zmax = max (2) (3.14)
(w,y,z)TEC

(3.15)

As it is necessary for the CNN to have an input of constant size all images have a
width and height of S pixels each, [BNB17] propose S = 96. To guarantee a constant
size, a scaling factor s is used for the points in the cluster:

s = 5 (3.16)

max(«rmax — Lminy Ymax — ymin>

Additionally an offset for both the x and the y axis is defined, this offset is used to
position the object in the centre of the image:

S — (Tmax — Tmin) * S
TOffset = ( 9 ) (317)

S_ max — Ymin) * S
Yoffset = (y 9 4 ) (318)

Now a point Poster = (2, Y, Z)T € c can be transformed to a point Prmage = (2, y)T in
the image coordinate system (2.1.2):

s 00 — Fmin L Offset
Plmage = 0 s 0 * | PCluster — | Ymin + Yot (319)

Zmin
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The brightness of a point pcruster = (2, ¥, z)T is determined by the distance from the
image plane:
. 2 — Zmi
Brightness | |y | | = —"— (3.20)
z

Zmax — “min

To extract the pseudo depth image all points of the cluster are transformed into the
depth image coordinate system, their brightness is determined according to equation
3.20. If there are multiple points which get mapped onto the same pixel the pixel
closest to the vehicle, i.e. the pixel with the lowest brightness is used.

3.4.4 Classification

The classification is done with a CNN. The network differentiates between the
classes vehicle, pedestrian, short facade and street clutter. The CNN consists of four
convolutional layer, with max pooling after each layer, followed by a fully connected
layer.

3.5 Improvements

Point clouds acquired by stereo systems pose different problems than those acquired
with Lidar sensors. The number of outliers, that are points that do not belong to any
object, is larger for stereo point clouds [WCG™18]. Furthermore these point clouds
are dense, that means the density of points is high in comparison to the Sparse point
clouds recorded with Lidar scanners.

3.5.1 Segmentation

Instead of using the four classes Sparse, Ground, Low Foreground and High Foreground
it is sufficient to only consider three classes Sparse, Ground and Low Foreground for
the Carolo Cup as there are no tall objects. In the following section the class Low
Foreground is referred to as Foreground.

The minimum and maximum height of the points in a cell is determined by a single
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point in the cell. Due to the, in comparison to Lidar, large number of outliers in
the point cloud it is not feasible to determine the type using the properties of a
single point. By using the minimum and maximum heights of the points in each
cell [BNB17] try to describe the properties of the distribution of the points along
the z-Axis. The distribution can also be described by statistical measures, such as
the mean and the standard deviation, which are more robust to outliers. Thus the
differentiation between ground and foreground cells is done by applying a threshold
to the standard deviation of the height of all points in a cell.

As the number of points is a robust feature, that means it is not prone to a small
number of outliers, the number of points can be used for the detection of sparse cells.

3.5.2 Extraction

All objects of the Carolo-Cup can be differentiated best from the front, thus the image
is extracted from a cluster ¢ by projecting all points of the cluster onto the frontal
plane of the cluster, this simplifies the extraction.

For the input S is chosen as 40, this size is sufficient to differentiate the objects by
shape while keeping the input for the CNN small, and thus reducing the runtime.

At a larger distance the density of the point cloud is lower than closer to the vehicle.
This yields pixels in the image which do not show a point of the point cloud even
though they show an object. To generate a distance invariant image a median filter of
size 3x3 is applied to the image, this closes the holes in the image. The density of the
point cloud is sufficiently large that only single pixels are missing at the maximum
distance, thus the kernel size of 3x3 is sufficient.

The median filter is a rank order filter, it takes all pixels in the neighbourhood of a
pixel, orders them by brightness and sets the pixel to the median of this sorted list.

The point clouds calculated from the MEC-View system and the Kitti dataset contain
additional colour information for each point. This colour information is used for the
extraction of the patches, instead of a grey-scale image where each pixel represents a
distance, the extracted patch is a colour image with the actual color of the points,
thus the patches are depicting the object.
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3.5.3 Classification

The Carolo-Cup Regulations (see section 3.1.1) lists three objects which can occur on
the track: Obstacles, Pedestrians and Signs. As Obstacles and Pedestrians are both
represented by white boxes they can not be differentiated by size or shape, thus they
are combined into one class. Additionally a class Clutter is added to represent objects
which do not belong to any class.

The size of the CNN has been reduced to decrease the runtime. The CNN consists of
two convolutional layers, with ReLLU as transfer function, each convolution uses 32
filters of size 3x3 each. For downsampling max pooling is used after each convolution.
The convolutional layers are followed by two fully connected layers, the first consist of
128 neurons with the ReLLU transfer function. The classification is done by the last
layer with three neurons. For these neurons softmax is used as a transfer function, so
that the neurons represent a valid probability density function. The structure of the
CNN can be seen in Figure 3.3.

40 x 40 x 1 20 x 20 x 32 10 x 10 x 32 3200 128 3

P —|

—{]

Convolution Convolution Flatten Dense Dense

Figure 3.3: Structure of the CNN (Graphic created using NN-SVG [LeN19))

The training data consists of 2,406 hand labeled patches extracted from point clouds
of the D435. To enlarge the dataset the training data has been augmented by factor
ten, this is done by mirroring the image along the y-axis, rotating the point cloud up
to 10° around the axes and adding noise to the image. From the training data 10% of
the data is used for verification during training to detect overfitting.

The CNN has been trained over 200, 000 epochs using the Adadelta optimizer with
cross entropy used as the loss. The learning rate started at 0.002, after 25, 000 epochs
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the learning rate was set to 0.0005 and after 55,000 epochs it was reduced to 0.0001.
During training both the accuracy, that is the number of correctly labeled images
divided by the total number of images, and the loss for both the training and the
validation data have been calculated to track the performance of the CNN.

3.5.4 Bounding Box Estimate

For the later stages of planning it is of great importance to not only know the position
of objects but additionally the dimension and orientation of the objects. Especially for
obstacles and pedestrians it is important to estimate the size, as these objects need to
be passed. For signs the bounding box is used as a region of interest for the following
classification. As both obstacles and pedestrians are box shaped the shape of objects
is estimated by fitting a bounding box to the cluster. The objects are always placed
flat on the ground, thus the roll and pitch angles are assumed to be zero.

The bounding box estimation is done in three steps: first the heading (yaw) of the
bounding box is estimated, in the second step the size of the bounding box in the
x and y dimension is estimated and in the last step the size in the z dimension is
estimated.

The heading vector is calculated using the PCA, identical to 3.4.3. Using the heading
vector the horizontal vector that is orthogonal to the heading vector can be calculated:

0
0f x 6heading
1
Uorth = (3.21)
or O
0l x 17heading
1
A point can now be transformed into the rotated coordinate system:
17heading
ﬁransformed = Uorth : (ﬁ_ ﬁmean) (322)
0 0 1

By transforming all points of a cluster ¢ a transformed cluster ¢ can be calculated.
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Using the transformed points the respective minimum and maximum values can be
calculated similar to equation 3.9 to 3.12. The maximum values can now be used to
form the four corner points:

Zmin,transformed
Do transformed = Ymin,transformed (3 23)

0

Lmin,transformed

P1,transformed = Ymax,transformed (3 24)

0

Tmax,transformed

D2 transformed = Ymax,transformed (325)

0

Tmax,transformed

p3,transf0rmed — ymin,transformed (3 . 26)
0

This guarantees, that all points are inside of the bounding box.

By transforming the corner points back into the original coordinate system the
bounding box can be calculated:
. ~1
Uheading
ﬁ == 17orth : ﬁnransformed + ﬁmean (327)
0 0 1

For the dimensions of the bounding box along the z-Axis the minimum and maximum
values are calculated identical to equation 3.13 and 3.14. These two values are selected
as the height of the bottom and top of the bounding box.

3.5.5 Ground Estimate

For the detection of the slope the ground plane is approximated by a single plane. At
the beginning of a slope the ground consists of two slopes, thus the single plane is
not able to perfectly fit the ground. As the ground estimate is only used as a binary
detector for the slope, the angle of the slope is not important, this accuracy is still
sufficient.
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To fit the plane all cells labeled as ground are taken into account. For each cell a
single point is determined by the centre of the cell and the average z values of all
points in the cell. In contrast to using all points which are part of a ground cell this
approach is not influenced by the varying density of the point cloud. Thus the plane
is not biased towards the ground points closer to the vehicle.

The plane is chosen such that, the average squared error between the points and the
plane is minimal. The algorithm used for this least squares approach is the algorithm
presented in Section 2.5.1.



4 Evaluation

In the following chapter the performance of the algorithm is evaluated. The first
section is a quantitative evaluation of the different steps of the pipeline and the
end-to-end detection performance. The second section evaluates the performance
and highlights the strengths and weaknesses of the detection. In the third section
the computational performance, that is primarily the required time for the different
steps, gets evaluated. In the next section the performance on real world data is
evaluated. Two different datasets are chosen: first the data acquired by a stereo
camera in Ulm-Lehr as part of the MEC-View-Project [Hen19] and second data from
the Kitti dataset [MG15]. Lastly the runtime of the algorithm is compared with other
state of the art algorithms.

4.1 Quantitative Evaluation

To evaluate the performance of the algorithm 20 point clouds recorded on the vehicle
with the D435 have been labeled by hand, in total there are 47 objects of interest in
these point clouds. The point clouds show 22 obstacles and pedestrians and 25 signs.
Ten of the 20 point clouds are recorded on the slope or show parts of the slope. In
each point cloud every point has been assigned one of the following classes:

e Ground

e Sign

Obstacle/Pedestrian

Street Furniture

Clutter

Obstacles and pedestrian are combined in one class as it is not possible to discriminate
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between them solely from the point cloud. The class "Clutter" represents all points
that are outliers and thus do not belong to any class, Figure 4.1 shows an example for
such outlier points. In contrast the class "Street Furniture' represents all points which
are valid but do not belong to objects which are of interest, these objects include
things such as guardrails and walls.

4.1.1 Segmentation

The segmentation is the first step of the detection pipeline. In this step every cell
gets a type assigned. The type gets decided based on the variance of the height of the
points in each cell.

The performance gets evaluated in two ways, first on a per point level, that means
the class of every point is compared with the actual class. The second way is the
evaluation on a per cell level, that means every cell is compared with the class of the
cell. The ground truth class of the cells is determined by the class with the largest
number of points in the cell. If a cell contains less than eight points it is classified as
Sparse, this is identical to how it is done in the algorithm.

To be able to not only see the correct detection rate but also the failure modes the
data is shown in a confusion matrix. The rows represent predictions, that is the
output of the algorithm, the columns the actual type of the point or cell. The matrix
consists of the points of all 20 ground truth point clouds.

The types of the labeled points are not the same as the types of the points after
segmentation. To compare the points, the types of the ground truth data get mapped
on the segmentation types. The mapping is as follows: Sign and Obstacle/Pedestrian
get mapped to the type Foreground, Clutter gets mapped to Sparse. The type Street
Furniture is ignored, as the type corresponds to different types which are not of
interest.

Actual
m Ground Foreground Sparse

Ground 058,704 (92.1%) 3436 (2.0%) 12,224 (53.3%)

Foreground 70,293  (6.8%) 164,209 (97.9%) 10,416 (45.4%)
Sparse 11,688 (1.1%) 71 (0.04%) 273 (1.2%)
Total | 1,040,685 167,716 22,013

Table 4.1: Confusion matrix on per point level
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The confusion matrix on point level (Table 4.1) shows that for the classes Ground
and Foreground most points get classified correctly. The precision for ground points
is 92%, for the points labeled as Foreground the precision is 98%. For the points
classified as Sparse only a small number of the points is actually labeled as Sparse.
This is due to the fact, that many points which are labeled as Sparse are actually in
a cell with relevant points and thus are classified as this class. An example for this
problem can be seen in Figure 4.1

Outlier

Sign

T

Figure 4.1: Outlier points next to a sign

Actual
W Ground Foreground Sparse

Ground 8,302 (96.9%) 45 (14.8%) 227 (0.45%)

Foreground 184 (21%) 248  (81%) 45 (0.1%)
Sparse 79 (0.92%) 12 (4.0%) 49,943 (99.5%)
Total | 8,565 305 50,215

Table 4.2: Confusion matrix on cell level

For the classification on a per cell basis, the confusion matrix is shown in Table 4.2.
The large number sparse cells in comparison to the number of sparse points is due
to cells which do not contain any points, thus they are sparse but no points labeled
sparse exist. For all classes the majority of cells get labeled correctly. The precision
for the ground cells is 97%, for the classes labeled as Foreground the precision is 81%,
for the sparse cells the precision is 99%. The comparably high number of ground cells
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which have been labeled as Foreground is due to the outlier points (see Figures 4.1
and 4.2.1).

When comparing the confusion matrices it can be seen that the precision on cell level is
on average higher than those on the per point level. This is due to the non-uniformity
of the cells, i.e. there are points of different classes in a single cell.

It can be concluded that the proposed heuristic yields a good precision for all classes.
Especially the high precision for foreground points (98%) provide a good basis for the
object detection and clustering.

4.1.2 Clustering and Bounding Box Estimation

To assess the performance the Intersection over Union (IoU) is calculated. This
statistic measures the similarity of two sets by dividing the size of the intersection of
both sets through the size of the union of both sets. For the bounding boxes the ToU
is determined by the respective volumes.

The ground truth data is generated from the hand-labeled point clouds. Only objects
which either belong to the class Sign or the class Obstacle/Pedestrian are considered
for the evaluation. For every object the bounding box is calculated identically to the
real detection: the orientation of the box is estimated using the PCA of all points.
The dimensions and position are chosen such that all points of the cluster are in the
bounding box.

The algorithm clusters all objects which belong to the class Foreground, as a result
there are more bounding boxes in the detection than there are in the ground truth
data. For the evaluation only the relevant objects, that are the objects with the
largest IoU relative to the ground truth, are used.

The IoU is calculated in 2D and 3D. For the 2D case the z-Axis is ignored and the
[oU is only calculated by area as it can be seen in Figure 4.2. This information is the
relevant information for the later stages of planning which are done solely in 2D. To
evaluate the true performance the 3D bounding boxes are evaluated as well, for this
step the IoU is calculated based on the respective volumes.

Both ToU-scores are calculated for all 47 objects in the 20 ground truth point clouds.
The average loU for both cases can be seen in Table 4.3. The histogram of the
respective values can be seen in Figure 4.3.
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Figure 4.2: Comparison of the estimated bounding boxes and the ground truth
data, seen from above.

The IoU-Scores are quite low when compared to typical values for computer-vision
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Average 2D 0.444
Average 3D 0.321

Table 4.3: Average IoU Scores

w
()]

()] [%)] 5
©4 o
Q Q
o) a4
O3 O
Y Y
(o] (o] 3
82 3
€ €2
S 5
Z1 =
0 Il | 0 A R N W | Il 0 I | [ (N [ |
0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5 0.6
loU (2D) loU (3D)
(a) 2D (b) 3D

Figure 4.3: Distribution of the IoU-Scores

tasks, this is due to the two major differences: first the heading for the bounding box
is not fixed, as a result the bounding boxes can be rotated relative to each other, this
can be seen for the upper bounding box in Figure 4.2a, which only yields an 2D-IoU
of 0.42. The second difference is the third dimension, which leads to a smaller IoU as
well.

It is clearly visible that the histogram for the three dimensional IoU is shifted to the
left when compared with the one for the two dimensional case. This shows that the
values for the 3D case are in general lower than the values for the 2D case.

Figure 4.2 shows that for most objects the bounding box is larger than ground truth
bounding box. Thus obstacles can be passed reliably without touching them, as the
minimum distance between obstacles is 1m [Bral8] the large bounding box is not
an issue. For signs a large bounding box results in a large region of interest, this
simplifies the classification as the complete sign is inside the bounding box.
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4.1.3 Classification

For every cluster an image is extracted and used for classification. The classification
is done with a CNN.

Every image is assigned one of three classes: Sign, Obstacle or Clutter. The class
Obstacle includes pedestrians as well.

For evaluation a separate dataset which has not been used for training has been
labeled. It consists of 657 patches extracted from the 20 ground truth point clouds.
Of all patches 37 patches show objects of interest, that is obstacles and signs, which
have been detected by the algorithm. The number of patches is lower than the number
of objects, this is because the algorithm is not able to detect every object correctly.

Actual .
m Clutter Obstacle Sign

Clutter 555 (89.5%) 3 (15.8%) 3 (16.7%)
Obstacle 49  (7.9%) 15 (7189%) 1  (5.6%)
Sign 16 (25%) 1 (52%) 14 (77.8%)
Total | 620 19 18

Table 4.4: Confusion matrix for the classification

Most of the relevant objects are classified correctly. The majority of patches that have
been classified wrong are Clutter which are either classified as Obstacles or Signs.

By looking at the classification as a binary classification problem, that is by combining
the classes Obstacle and Sign into one class "relevant" a second confusion matrix
can be created, this can be seen in Table 4.5. Furthermore the precision, recall and
Fi-score can be calculated [Rij79]. The recall is the number of correctly labeled
patches divided by the total number of patches for this class. The F-score is the
harmonic mean of precision and recall. The results can be seen in Equation 4.1.

31
Precisi = =0.32 4.1
recision 3T 65 (4.1)
31
Recall = ——— =0.84 4.2
eea 31+ 6 (42)
0.84-0.32

F = 0.46 (4.3)

0844032



44 FEvaluation

Actual
m‘ Relevant Clutter

Relevant 31 (83.8%) 65 (10.5%)
Clutter 6 (162%) 555 (89.5%)
Total | 37 620

Table 4.5: Evaluation of the classification as binary classification problem

It is more important to detect all relevant objects than to achieve a high precision,
thus the classification has been tuned to produce a high recall rate (84%). The high
number of false positives which result in a low precision can be tolerated because
according to the Carolo-Cup rules [Bral8] there are no objects other than obstacles
or signs on the road.

4.1.4 Overall Performance

The presented algorithm is an end-to-end approach for object detection in point clouds,
thus the overall performance is evaluated.

The performance is evaluated similar to [BNB17]: for every object category the
precision, recall and Fi-score is calculated. For the evaluation the detected object is
compared with the object with the largest IoU in the ground truth data.

Category ‘ Number of Objects ‘ Pr Re F
Obstacle/Pedestrian 20 100%  84% 91%
Sign 18 78% 100% 88%
Average/Sum | 38 | 89%  92% 90%

Table 4.6: Overall performance of the proposed algorithm. Notations: Precision

(Pr), Recall (Re), Fi-score (F}).

The performance of the proposed algorithm is shown in Table 4.6 compared with the
algorithm presented in [BNB17] which is shown in Table 4.7. Of the 47 objects in the
20 ground truth point clouds the proposed algorithm detects 38, the other algorithm
detects only 37 objects. This yields an detection rate of 81% and 79% respectively.

For the average F)-score the proposed algorithm is also superior to the detection
presented in [BNB17], with 90% and 86% respectively. On Lidar data [BNB17]
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Category ‘ Number of Objects ‘ Pr Re F
Obstacle/Pedestrian 20 100%  80% 89%
Sign 17 71% 100% 83%
Average/Sum | 37 | 86% 90% 86%

Table 4.7: Overall performance of [BNB17]. Notations: Precision (Pr), Recall
(Rc), Fi-score (F}).

achieves similar results, with a precision of 86%, a recall of 83% and a F)-score of
85%, albeit with four instead of three classes.

It should be taken into consideration that the dataset used for evaluation consists of
less point clouds than the one used by [BNB17]. Nonetheless the improvements of
the algorithm result in a 2 percentage point higher detection rate, the precision is
improved by 3 percentage points, the recall by 2 percentage points and the Fj-score
by 4 percentage points.

4.1.5 Ground Estimate

For the evaluation all points of the 20 ground truth point clouds which are assigned
the label ground are taken into account. For each of these points the distance to the
approximated plane is calculated. Over all point clouds there are 1,691,693 points
which are part of the ground.

Figure 4.4 shows the distribution of the distances to the ground plane. It can be seen
that most points are close to the estimated plane. Over all points the average absolute
distance to the plane is 9.3 millimeters. The maximum error is 33cm, the point which
yields this error is approximately 2m from the vehicle after a slope on a flat part of
the track, the estimated plane approximates the slope and not the flat part.

For situations in which the ground can not be approximated by a single plane the
estimate yields the expected error. The plane has a slope, but the slope is smaller than
the slope of the actual ground. In situations in which the ground can be approximated
by a single plane the error is small, in the ground truth data 71% of all points are
closer than lcm to the estimated plane. Thus the slope can be detected using the
ground plane estimate.
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Figure 4.4: Distribution of the distance to the plane
4.1.6 Comparison with the current obstacle detection

The proposed algorithm is intended to replace the obstacle detection currently used
on the vehicle (see 3.2.1), thus the performance of the algorithms should be compared.
For the comparison the IoU scores are used, as described in section 4.1.2. The IoU is
calculated in two ways: once only for the detected objects and second for all existing
objects, objects that are not detected yield an IoU of 0 for this score.

As the obstacle detection is intended to only detect obstacles, only clusters labeled
as obstacles are taken into account. Over the 20 ground truth point clouds there
are 22 objects labeled as obstacles. For the evaluation only the 2D-IoU is calculated
as the current obstacle detection is not able to estimate the bounding box in three
dimensions.

The current obstacle detection is only able to detect four of the 22 objects, the
proposed algorithm detects 19 objects. The bad performance of the current obstacle
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Algorithm Average 2D-IoU
Over detections Over all objects
Current obstacle detection 0.48 0.087
Proposed 0.44 0.38

Table 4.8: Comparison of the IoU-scores of the proposed algorithm versus the
current obstacle detection

detection is primarily due to the fact, that half of the ground truth point clouds are
recorded on the slope which the current obstacle detection can not handle.

Table 4.8 compares the IoU scores of both algorithm. For the IoU score calculated over
the detections the current obstacle detection is marginally better than the proposed
algorithm, but according to [RLF15], even humans are not able to reliably differentiate
an IoU of 0.3 from one of 0.5. When considering all objects the proposed algorithm
yields an higher IoU score than the current obstacle detection.

For the detected obstacles the difference in IoU scores is negligible. When considering
all objects, this is the case especially for situations involving the slope, the proposed
obstacle detection yields a far better performance than the current obstacle detection.

4.2 Qualitative Evaluation

In the following section the performance is evaluated qualitatively. For this certain
difficult situations in which the algorithm performs well and situations in which the
algorithm fails are shown and discussed.

4.2.1 Failures

Clustering at Large Distance

Large objects, such as walls, which are further away are often clustered into multiple
objects. The wall in Figure 4.5 is about three meters from the sensor. At this distance
the distance to the completely flat wall has a deviation of up to 0.3m. This leads
to cells with a large variance in density which get clustered into different clusters.
Furthermore the sign in the foreground which can be seen in the bottom right in
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Figure 4.5 casts a "shadow" onto the wall, i.e. a frustum in the point cloud in which
there are no points. This results in a large change in density of the wall segment,
which leads to multiple clusters.

As this only occurs for large objects which are far away, this doesn’t influence the
performance of the detection of relevant objects.

Figure 4.5: The wall in the background is combined into many clusters

Outliers

In the four corners of the depth-image there are a points with wrong depth estimates.
This leads to four rays consisting of these outliers in the point cloud. To remove these
rays the point cloud gets cropped before inserting the points into the grid. The region
of interest for cropping needs to be large enough to contain all points, even in extreme
situations such as on the slope. As a result some of these outlier points, especially
close to the vehicle where they are close to the real points, are included in the region
of interest.

This leads to the problem seen in Figure 4.6, the four small clusters in the foreground
consist primarily of ground points. But due to some outlier points below the relevant
points the cells get classified as Foreground.
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Due to the frequent occurrence of this problem there is sufficient training data for
the CNN which show such patches. As a result the cells with outliers get classified
reliably as Clutter.

g

Figure 4.6: Clutter close to the vehicle

4.2.2 Expected Behaviour

Signs

For obstacles and signs, such as the one shown in Figure 4.7 the bounding box is
estimated correctly. As the bounding box is selected in such way that all points of
the cluster lie within the box, the later steps in the vehicle software, such as planning,
have a good bounding box to avoid the obstacle. Furthermore this provides a good
region of interest for the classification of signs as the complete sign is visible in the
extracted patch.
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Figure 4.7: Detected sign

Obstacle touching the guardrail

Figure 4.8 shows an obstacle touching the guardrail of the ramp, the guardrail is
visible on the bottom left, the obstacle is in the centre of the image. In the point
cloud there is no gap between the points which belong to the obstacle and the points
which belong to the guardrail.

In this difficult situation the separation of the two objects on subcell level is still
possible due to the difference in density in both cells. As the obstacle is higher than
the guardrail it contains more points and thus has a higher density. The current
obstacle detection is not able to separate the objects.
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Figure 4.8: Obstacle close to the guardrail

4.3 Computational Performance

The D435 produces up to 30 frames per second at the maximum resolution, this limits
the time for each run of the algorithm on a point cloud to 33ms. Therefore it is
required that the algorithm runs on average faster than 33ms. In the following section
the performance of the algorithm is evaluated.

4.3.1 Setup

The evaluation of the computational performance is done with a reference system
similar to the system in the vehicle, as the vehicle was not available at the time of
writing. The system is equipped with an Intel@©Core™i7-6700 CPU which similar in
performance to the Intel(©Core™i7-6770HQ CPU used in the vehicle. The NUC which
is used in the vehicle only provides the integrated Graphics processing unit (GPU),
there is no dedicated GPU. Most frameworks used for neural networks, such as
TensorFlow which is used here, require a Nvidia-GPU which is able to use Compute
Unified Device Architecture (CUDA) [Tenl19]. As the integrated GPU does not
support CUDA it is not possible to accelerate the computations of neural networks.
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Therefore the GPU in the reference system is not used for the evaluation.

Ubuntu 18.04 is used as the Operating system (OS), with GCC-8 as the compiler for
the software.

All steps of the algorithm are run sequentially to reduce the effects introduced by the
scheduler of the OS.

4.3.2 Overall Performance

The runtime of the algorithm is measured on the 20 ground truth point clouds. To
achieve more precise results the algorithm is run 100 times for every point cloud.
Over all runs the mean and the standard deviation is calculated. Not only the overall
runtime is measured but additionally the runtime for every part of the algorithm is
measured.

‘ Average runtime Standard deviation

Segmentation 2.1 ms 0.49 ms
Clustering 1.2 ms 0.52 ms
Extraction 0.62ms 0.25 ms
Classification 15 ms 10 ms
Bounding Box Estimate 0.73ms 0.29 ms
Ground Estimate 0.12ms 0.046ms
All ‘ 19 ms 11 ms

Table 4.9: Runtime of the algorithm

The results can be seen in Table 4.9. Most of the time is used for the classification
with the CNN. The only other steps which require more than one millisecond on
average is the creation of the grid and the clustering on the grid using connected
components labeling on two levels. For the creation of the grid the most time is used
for inserting all points in the grid, this is due to the large number of points. For the
clustering the most time is used for the clustering of the fine clusters.

The average runtime is well below the time for one frame (33.3ms), this shows that
the algorithm can be used on the vehicle.
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4.3.3 Runtime of the CNN

As the CNN is the part of the algorithm which requires by far the most time, its
performance is evaluated in more detail.

Figure 4.9 shows the runtime of the CNN for all patches against the number of patches.

As expected the measurements are all more or less on a straight line, this shows that
the runtime is proportional to the number of patches.
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Figure 4.9: Plot of the runtime of the CNN against the number of patches
Using least-squares regression a straight line can be fitted to the data. This line is

given by:
y=049-2+25 (4.4)

The slope of the straight is 0.49 which is the average time in milliseconds per patch.

The average runtime of all steps of the algorithm but the CNN is on average 4.77ms.
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The maximum time the algorithm should require is 33ms, with these numbers the
maximum number of patches which can be classified on average can be calculated:

=" =576 (4.5)

The clusters get extracted from the grid from near to far, the classification is started
with objects which are closer to the vehicle. These objects are of greater importance,
as these are the objects the vehicle has to handle first.

If the algorithm is required to finish in the given 33ms the classification can be stopped
after a certain time. On average it is possible to classify 57 patches in this time frame.
Compared to the relatively low number of relevant objects close to the vehicle this
suffices to detect all relevant objects.

4.4 Evaluation on real world data

According to [WCG™18] object detection on stereo data can be vastly improved by
representing the data as a point cloud instead of a disparity map. To verify this the
algorithm should not only run on the data from the D435 but additionally on real
world data.

The point clouds used as an input for the algorithm are calculated from two colour
images. For the calculation of the disparity map semi-global block matching, an
improved version of semi-global matching (see 2.2.1) is used. From the disparity
map the point cloud is calculated, as explained in 2.2.1. In comparison to the data
provided by the D435 no active stereo is used, the two cameras are the only source of
depth information.

4.4.1 Kitti

The baseline of the camera system is only 0.54m [MG15], as shown in 2.2.1 the baseline
distance is inverse proportional to the depth error. As a result the quality of the
point cloud is much lower than the quality of the point clouds acquired with the D435.
Figure 4.10 shows a part of one of the two images used for the stereo extraction. The
image is part of the Kitti dataset [MG15]. Figure 4.11 shows a part of the point cloud
calculated from the stereo pair.
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The scene shows two cars on the opposite side of the road. The car that is closer,
marked in red, is about 13 meters from the camera. Even at this distance the point
cloud does not show a single blob but multiple blobs around the actual position of
the vehicle.

Figure 4.11: Bird’s-eye view of two vehicles in a point cloud generated from
Kitti data

The poor quality of the point cloud results in many small clusters due to the large
variance in density throughout a single object. Therefore the patches that get extracted
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from the point cloud seldomly show the complete object, most of the time only parts
of the objects are shown, subsequently the CNN yields a poor performance.

To increase the accuracy of the classification the colour information of the point
cloud is used to generate patches, which show the relevant object. Figure 4.12 shows
examples for such patches. The first row (Figures 4.12a, 4.12a and 4.12¢) show all
objects which are closer than 10 meters to the cameras. The second row (Figures
4.12d and 4.12d) show objects at a larger distance. For the objects closer than 10
meters the algorithm is able to correctly detect the objects and extract patches which
show the complete vehicle. At a larger distance a single object in the point cloud
is split up into multiple objects by the detection. Therefore multiple patches which
show only a part of the vehicle are extracted.

(a) Car (b) Van (c) Sign

(d) Rear of a car (e) Centre of a car

Figure 4.12: Patches extracted from Kitti data

4.4.2 Ulm-Lehr

For the data acquired by the pilot installation in Ulm-Lehr the quality of the point
cloud is better due to the larger distance of the cameras. As the cameras are stationary
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they all show the same scene. The scene depicts a flat road with vehicles, no slopes
are present. Due to the elevated mounting position of the camera system most parts
of the road are visible at all times. In contrast objects in the Kitti dataset are often
occluded by other objects.

The evaluation is done using the IoU, similar to section 4.1.2. For the evaluation 2,322
labeled point clouds with 4,725 objects in total are used. Out of the 4,725 objects
4,171 objects are detected by the algorithm, this is a detection rate of 88%. Figure
4.13 shows the histograms of the two- and three-dimensional IoU-scores, the average
two dimensional IoU-score is 0.53, the average three-dimensional-score 0.43.
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Figure 4.13: Distribution of the IoU-Scores

Both IoU-scores are higher than the respective score for the D435 data. This is
primarily due to the simplicity of the scene and the elevated camera position.

Figure 4.14 shows examples of the detections and the corresponding ground truth
data. Objects closer than 50 meters, such as the ones shown in Figure 4.14b generate
an accurate bounding box. At distances over 50 meters, some objects can still be
detected, like the object seen in 4.14a but there is some noise present.
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4.5 Comparison with other algorithms

Most of the current state of the art algorithms for object detection, such as [SWWL19],
[YLU19] and [SMAG18], use deep neural networks for detection and classification
of the objects. The large CNNs used for this end-to-end detection require a lot of
computational power. [SMAG18] states, that Complex-YOLO runs at 50 FPS on a
NVIDIA TitanX GPU. As there is no official implementation publicly available, the
runtime can not be measured on the vehicle. To estimate the performance YOLO
[RF18] is used, this CNN is used for object detection on images and is the base for
Complex-YOLO. YOLO is publicly available and runs at 30 FPS on the TitanX GPU.

Using the numbers given in Table 4.10 the runtime of Complex-YOLO on the vehicle
can be estimated, assuming that the ratio between YOLO and Complex-YOLO is
independent of the device used:

tCom])lex— YOLO TitanX ]
YOLO Vehicle 3 S (4 6)

L Complex-YOLO Vehicle =
tyOLO TitanX

‘ Titan X On the vehicle

YOLO 33ms 46s
Complex-YOLO | 20ms approx 31s

Table 4.10: Comparison of the runtimes (Complex-YOLO on the vehicle is
estimated)

This is only a rough approximate but the estimated time is about three magnitudes
larger than the maximum time allowed. This shows that it is not possible to use
a deep neural network for end-to-end detection on the vehicle without a GPU or
dedicated hardware for acceleration of the calculations.






5 Conclusion

The objective of this work was to implement an algorithm which is able to detect and
classify all objects occurring on the track of the Carolo-Cup in real time using the
point cloud acquired by the D435.

For this task an algorithm was implemented and improved to be used with point
clouds acquired by stereo camera systems. The algorithm consists of a separate
object detection and classification. For the detection the three dimensional space
is subdivided into a two dimensional grid. Every cell of the grid is assigned a type,
based on the number of points and the variance of the height of the points in the
cell. All cells that belong to the foreground are clustered using connected components
labeling on two scales two determine objects. For each object an pseudo depth image
is extracted and classified using a CNN. Additionally a bounding box is estimated for
every cluster. To detect slopes a ground plane is estimated.

The proposed algorithm is able to robustly detect most of the required objects in the
required time. It was shown that the performance of the detector is better than the
old obstacle detection, especially on the slope.

The detection algorithm of [BNB17] was adapted for the usage with point clouds
generated from stereo data. The proposed changes have improved the overall perfor-
mance of the algorithm when compared with both the original algorithm on stereo
and Lidar data.

Furthermore the algorithm has been evaluated on data acquired with stereo systems
in the real world. With this data the performance depends on the quality of the point
cloud. As a result of the small baseline distance of the camera system of the Kitti
dataset the quality of the point cloud is only sufficient for a distance of up to ten
meters. Due to the larger baseline of the system in Ulm-Lehr the quality of the point
cloud is much better, for this data the algorithm is able to detect objects at a distance
of over 50m.
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5.1 Future improvements

The performance of the algorithm depends on the quality of the point cloud, thus a
better point cloud improves the quality of the detections. The quality of the point
cloud can be improved by using a better stereo matching algorithm, such as [CC18|
[LSU16] [ZL16]. They perform stereo matching using CNNs, this improves the quality
of the point cloud but requires a lot of processing time. Thus it is not a viable option
for the Carolo-Cup, but for the real world data it can improve the quality of the point
clouds.

To make the detection less prone to the varying quality of the point cloud the
classification of the cell needs to be improved. For this an MLP which classifies the
histogram over the z values of all points in a cell could be used. Such a neural network
would run sufficiently fast, even without a GPU, but due to limitations in time this
approach has not been pursued.
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